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The goal of this ongoing initial study is to model the critical behaviors of rotorcraft elastomeric dampers, i.e. the 
hyperelastic, viscous, and nonlinear behaviors involving hysteresis loops. On completion, the current model 
would not require the physical damper to exist a priori, and could be used to optimize damper design concepts. 
An initial, overall validation effort has demonstrated the successful step-by-step sample development of a new 
finite element damper model and, importantly, its integration with the multibody dynamics analysis DYMORE. 
Two material models, the Haupt-Sedlan model and the recently proposed Höfer-Lion model, have been analyzed, 
and the results have been fitted to sample experimental data. Both models gave acceptable results for the storage 
and loss moduli. Since at present there is a dearth of available appropriate material data for the typical 
elastomers used in helicopter dampers, a new experimental effort has been initiated by Materials Technologies 
Corporation (MTC) and Georgia Tech to conduct materials testing and acquire the required material data. 
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 Ramp strain rate, also stiffness 
 Length of specimen 
 Spherical stress 
 Structural variable 

 Steady state of structural variable 
 

 Recovery time for structural 
variable  

 Width of specimen 
,  Coordinates in reference and 

deformed configuration 
 Total shear strain 
 Strain step size in relaxation test 

,  Elastic strain in plastic and 
viscous branch 

,  Plastic and viscous strain 

 Shear deformation, also 
displacement 

 Plastic constant 
 Viscosity 

 Material constants 
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 Second Piola-Kirchhoff stress 
tensor 

 Total shear stress 
, ,  Stresses in elastic, plastic and 

viscous branch 
 Cauchy stress tensor 

 Deviatoric Cauchy stress tensor 

 
Strain energy functions 
corresponding to , , and  

 
Höfer-Lion Model 

 Internal variable 
 Intrinsic time scale 

 Material parameters 
 Relaxation time 

 Harmonic strain frequency in [rad/sec] 
and [Hz] 

 
 

Introduction 
 

In helicopters, the need to stabilize the lightly damped 
lead-lag motion of the rotor blades necessitates the use of 
external dampers. Hydraulic dampers are often used, but 
they have high maintenance costs, and these high 
operational/lifecycle costs have led to the development 
and use of elastomeric dampers. Elastomeric dampers 
feature simpler mechanical design and a lower part count. 
The design of elastomeric dampers is hampered by a lack 
of reliable analytical tools that can be used to predict their 
damping behavior in the presence of the large multi-
frequency motions experienced by the rotor blade, and 
thus the damper. There is a need to develop advanced 
modeling tools for the analysis and design of elastomeric 
components as elaborated below. 
 
Elastomers are hyperelastic materials and their energy 
dissipation is characterized by hysteresis loops that are 
dependent on the amplitude and the frequency of the 
damper motion, and the temperature. The complex 
nonlinear, hyperelastic, and viscous nature of the 
materials used in elastomeric dampers makes their 
analytical modeling difficult. Current analytical models 
often use simplified representations such as linear device 
models, but these device models require costly and time 
consuming testing to construct them. Moreover, neither 
the material characteristics nor the damper geometric 
configuration are directly modeled in these simplified 
device models, Refs. 1-9. The state of the art in first-
principles modeling of elastomeric dampers is reflected in 
the approaches of Refs. 10-11. Although the basic theory 
is available, the rotorcraft industry has not made use of 
this available knowledge in comprehensive dynamics 
analysis codes. Instead, the rotorcraft analyses are heavily 
dependent on the lumped-parameter based device models 

and consequently, the effects of geometric and dissipative 
nonlinearities on the damper behavior are not properly 
accounted. 
 
In this initial study, first principles are used to model 
rotorcraft elastomeric dampers. First-principles models 
predict the behavior of a device based on a continuum 
mechanics approach in which the geometric configuration 
of the various components of the device is modeled using, 
for example, a finite element approach, and the material 
behavior is represented by an appropriate set of nonlinear 
constitutive laws. Such a model would not require the 
damper to exist a priori, and could be used to optimize 
the design of a damper concept.  

 
Program goal 
 
The overall objective of this ongoing, multi-year effort is 
to develop a finite element based tool for modeling the 
response of complex elastomeric components. This finite 
element tool will be integrated with a finite element-based 
multibody dynamics analysis code to accurately and 
reliably simulate the dynamic response of rotorcraft with 
elastomeric components. This analysis will utilize first 
principles-based, nonlinear hyper-viscoelastic 
formulations. The tools developed in this study will be 
validated using bench and flight test data. 

 
Technical approach 
 
The overall technical approach, with the following three 
elements, is shown below in Fig. 1: 

1) Establishment of constitutive relationships for 
the material behavior of carbon filled elastomers, 

2) Development of a first principles based finite 
element model for elastomeric dampers; and 

3) Integration of these models within a multibody 
dynamics code for comprehensive rotorcraft 
analysis.  

 

 
 

Fig. 1. Overall technical approach. 
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Overview of current study 
 
This paper is divided into five sections, outlined as 
follows: first, an Initial Validation study is described in 
which the basic, overall formulation is validated using 
simple examples; second, relevant Basics of Elastomer 
Modeling are given; third, a specific elastomer model of 
interest, the Haupt-Sedlan model, is described and results 
using this model are presented; fourth, the recent 2009 
Höfer-Lion elastomer model is described and results 
using this model are presented; and fifth, a completely 
new experimental effort recently initiated by Materials 
Technologies Corporation (MTC) and Georgia Tech to 
obtain material properties is outlined, followed by the 
Concluding Remarks. 
 

Initial Validation 
 
A nonlinear hyperelastic material formulation, based on 
the polynomial form of the strain energy density function 
for the elastomeric material, was implemented. As an 
example, Fig. 2 below shows a simple damper model 
consisting of an elastomeric element sandwiched between 
two aluminum plates. The damper has been modeled as a 
static, plane strain problem with a thickness of 100 mm. 
The left edge of the model is fully fixed to the ground. A 
concentrated load is applied at the lower right corner of 
the model to simulate damper loads. The model has been 
analyzed using the currently developed finite element tool 
(FE tool) as well as the commercially available package 
ABAQUS.  Currently, the multibody dynamics analysis 
used is DYMORE, Ref. 12. Under the applied load, the 
strain level in the elastomeric components has been 
calculated to be ≤ 10%, consistent with the typical strain 
levels in elastomeric dampers. The discrepancy between 
the results from the FE tool and the ABAQUS simulations 
is ≤ 3%.    
 

 

Fig. 2. Simple damper model. 
 
After validating the FE tool for static conditions, the FE 
tool was modified to include dynamic effects, and 
dynamic analyses have been performed. A linear strain 
rate dependent model has been used to represent the 

viscous properties. Two key results are shown in this, as 
follows: the dual frequency excitation results and the 
results that demonstrate the integration of the new finite 
element tool with the multibody dynamics analysis code 
DYMORE. 
 
Dual frequency effect 
 
This effect was investigated by calculating the responses 
of the simple damper model under dual frequency 
excitation. Typical damper stroke amplitudes at the 1 
per/rev and the lag frequency (approximately 0.27 
per/rev), respectively, have been prescribed as follows: 
7.62 mm and 2.54 mm.  The corresponding reaction 
forces are computed as F1, F2 , and F3. The FE analysis 
results are shown in Fig. 3 for two different damping 
coefficients, = 0.01 and 0.05 sec. A close look at Fig. 3 
verifies that the resulting force F3 is not a simple 
superposition of the two forces, F1 and F2. These results 
are as expected since the rule of superposition principle 
does not apply under nonlinear system conditions. The 
current first-principles based FE tool captures this 
behavior as shown by the analysis result F3 ≠ F1 + F2 . 
 

 
Fig. 3. Dual-frequency excitation. Data show that 
frequency superposition is not possible due to 
nonlinearity. 
 
Integration of elastomeric damper with multibody 
dynamics analysis code 
 
The FE tool was implemented into a multibody dynamics 
analysis for a complete closed-loop comprehensive 
analysis of a rotorcraft. A typical dynamic simulation 
procedure is shown in Fig. 4 below. First, the multibody 
dynamics analysis code simulates the response of the 
vehicle based on the current boundary conditions and the 
information from the previous step. The simulated 
loadings (displacement) on the damper are used as the 
boundary conditions for the finite element simulation of 
the elastomeric damper. The response of the damper 
(force) is then used for the next simulation step.  
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Fig. 4. Integration of present finite element tool with a 
multibody dynamics analysis code. 
 
In the time domain simulations, a UH-60A rotor at a 
high-airspeed forward flight condition has been 
considered using DYMORE. The following two cases 
have been considered: the elastomeric damper model 
shown in Fig. 2 and a linear spring-dashpot model. Figure 
5 below shows the time histories for the damper stroke 
and the damper reaction force. It can be seen from the 
plot on the top that the damper stroking history is almost 
identical for both models. This is expected as the lead-lag 
motion is mainly determined by the rotor system.  
However, as shown in the plot at the bottom, the resulting 
damper force profiles are distinctly different, since the 
reaction forces are determined by the respective 
properties of the dampers. 
 

 
 

Fig. 5. DYMORE implementation, damper stroke and 
force comparison for elastomeric and spring-dashpot 
dampers. 
 
 
 
 

Basics of Elastomer Modeling 
 

To understand the fundamentals of elastomer modeling, a 
study of the inelastic behavior of such materials is 
critically important, especially when these materials are 
used as energy dissipation components, for example, 
elastomeric dampers. The first inelastic characteristic of 
elastomeric materials is the nonlinear rate-dependent 
viscous effect, apparent in relaxation and creep tests. The 
second inelastic behavior of significance is the amplitude 
dependence and equilibrium hysteresis effect which is 
usually modeled by the theory of plasticity. Moreover, the 
Mullins effect, Refs. 13-14, which is a strain-induced 
stress-softening during the first few loading cycles is an 
important inelastic behavior observed in filled elastomers 
(the Mullins effect is not considered in the current study). 
 
There is no consensus on the most appropriate approach 
to modeling carbon filled elastomers. At present, it is not 
clear what phenomena need to be included in the model. 
Extensive testing is required to determine the material 
parameters. For some models, many parameters are 
required. Of the various models available, the internal 
variables model is commonly used, and can be further 
classified into the following two main models: 
deformation decomposition and stress convolution, 
discussed as follows. 
  
Internal variables based models 
 
One class of the internal variables based models is 
generalizations of the three-parameter solid models, for 
instance, the Zener model, Fig. 6. A Zener model consists 
of a spring and a Maxwell element in parallel. One way to 
generalize the Zener model is to include more than one 
Maxwell element in parallel to represent different 
relaxation times of the material. Another approach is to 
add plastic elements to the generalized Zener model. 
These plastic elements model the equilibrium hysteresis 
effect of the elastomeric materials. The Maxwell and 
plastic elements are all independent from each other.  
 

           
   

Fig. 6. Zener model. 
 

Internal variables based models: Multiplicative 
decomposition of deformation gradient: The 
multiplicative decomposition of the deformation gradient 
tensor can be explained using a uniaxial rheological 
model, Fig. 7. This model is a generalization of the Zener 
model with an additional plastic element. The spring at 
the top represents the nonlinear elastic behavior. The 
Maxwell element in the middle models the rate-dependent 
overstress. Finally, the plastic element at the bottom 
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describes the rate-independent equilibrium hysteresis 
effects, Refs. 15-16. 
 

 
 

Fig. 7. Uniaxial rheological model. 
 
The stress in each branch is the elastic equilibrium stress 

, overstress , and equilibrium hysteretic stress , 
respectively. The total resulting stress is the sum of these 
three stresses 

                                   (1) 
The total resulting strain, ,  is decomposed into the 
elastic and viscous parts for the Maxwell element as 

                                         (2) 
or, into the elastic and plastic strains for the plastic branch 
as 

                                        (3) 
The strain energy function is the sum of three strain 
energy functions, which are related to the three springs in 
the model, respectively: 

                    (4) 

In particular,  is a function dependent on the total 
strain ; the strain energy of the spring in Maxwell 
element, , is a function dependent on the elastic strain 

; and the strain energy of the spring in the plastic 
branch, , is a function dependent on the elastic strain 

. 
 
For isothermal processes, the entropy inequality reduces 
to the following statement that the stress power minus the 
rate of change of free energy must be non-negative: 

                                      (5) 
and it can be further reduced to the following: 

                             (6) 

This inequality shows that the choices of the evolution 
equations for the inelastic strains  and  are not 
arbitrary if the model is required to be compatible with 
the dissipation inequality. This inequality can be satisfied 
in the sense of sufficient conditions by appropriate flow 
rules, as follows: 

 and               (7) 

where,  is the viscosity and , is a material 
constant. Since the rate-dependent response is nonlinear 

and the relaxation behavior depends on the loading 
history, the viscosity should be a function of process 
quantities. Different flow rules can be used as long as 
they satisfy Eq. (6). 
 
Internal variables based models: Stress convolution: The 
stress convolution models are based on an additive 
decomposition of the second Piola-Kirchhoff stress 
tensor, instead of the deformation gradient tensor, into 
equilibrium and nonequilibrium parts. The equilibrium 
response is assumed to be governed by a free energy 
function ; while the nonequilibrium response is 
characterized by a set of nonequilibrium free energy 
functions , where k represents the kth relaxation 
mechanism of the material and each of them is associated 
with a nonequilibrium stress , Ref. 17. One or more 
relaxation mechanisms may be considered in the model. 
Note that both parts of the strain energy are functions of 
the total strain G, which is different from the deformation 
decomposition based models. The second Piola-Kirchhoff 
stress tensor, for a generalized Zener model, is given as 

        (8) 

 
A simple linear evolution equation which governs the 
nonequilibrium stress is postulated as [Refs. 18-19], 

       (9) 

where is the relaxation time related to the kth 
relaxation. Eq. (9) can be written in a convolution form as 

 (10) 

This model is well known to be computationally efficient; 
however, it has not been conclusively proven to satisfy 
the second law of thermodynamics for all admissible 
processes. 
 

Haupt-Sedlan Model (H-S Model) 
 
To easily and clearly understand the fundamental 
characteristics of the elastomeric material models, two 
models will be evaluated based on a simple shear 
deformation, as depicted in Fig. 8. The right part of the 
figure shows one elastomeric sample in its reference 
(solid line) and deformed (dashed line) configurations. 
The deformation is assumed as plane strain state and the 
ratio of the length to width is assumed to be >>1. 
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Fig. 8. Elastomer specimen under double-lap shear 
test. 
 
For a material point with coordinates  in the 
reference configuration, its coordinates become 

 in the deformed configuration, where 
 is the shear strain. The deformation gradient is 

as follows: 

                            (11) 

The right Cauchy-Green strain tensor is as follows: 
                                          (12) 

The invariants of the right Cauchy-Green strain tensor are 
defined as follows: 

                                    (13a) 

           (13b) 

                                          (13c) 
Since , a volume preserving deformation is under 
consideration. 
 
When a strain energy function  is assumed, the second 
Piola-Kirchhoff stress tensor can be derived from it as 
follows: 

           (14) 

Considering  and , the second 

Piola-Kirchhoff stress tensor can be computed as: 

                              (15) 

with 

                               (16a) 

                             (16b) 

                          (16c) 
 
The second Piola-Kirchhoff stress tensor, Eq. (15), can be 
transformed to the Cauchy stress tensor as follows: 

 (17) 

This Cauchy stress can be further decomposed into 
spherical and deviatoric parts, respectively, as 

                (18a) 

  (18b) 

 
Note that the deviatoric stress components , , 

and  are higher order terms in terms of the shear 
strain  compared with . Hence, when  is assumed 
to be small, these components can be neglected. In the 
following discussions, only the shear strain  and shear 
stress  will be considered. In other words, this simple 
shearing deformation is considered as a one-dimensional 
problem. The subscript for the shear stress  will be 
omitted in the following discussions. 
 
The one-dimensional version of the Haupt-Sedlan model, 
the H-S model, Ref. 15, is shown in Fig. 9 below. It 
consists of elastic, viscous, and plastic branches in 
parallel. The total shear stress is written as 

                             (19) 

where , , and  are the elastic equilibrium stress, 
hysteretic equilibrium stress and overstress contributions 
to the total response, and m and n are the number of 
plastic and viscous branches the model may include, 
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respectively. The total strain in the plastic and viscous 
branches is decomposed into the elastic and plastic parts, 
and elastic and viscous parts, respectively, 

 and                 (20) 
 

 
 

Fig. 9. One-dimensional rheological representation of 
H-S model. 
 
The evolution laws governing the plastic and viscous 
strains are assumed as the following forms, respectively: 

                              (21a) 

                                     (21b) 

where  is the viscosity and  a material 
constant. The viscosity is assumed as a function of 
process variables as follows: 

                            (22) 

where  and  are material constants. The relaxation 
time  is allowed to vary between a minimum  and 
a maximum value  according to: 

                        (23) 
where q is structural variable governed by the following 
initial-value problem: 

              (24) 

where  and  are additional material parameters. Note 
that q is between 0 and 1. 
 
The elastic equilibrium stress , hysteretic equilibrium 
stress  and overstress  can be related to the shear 

strain , plastic strain , and viscous strain , 
respectively, using strain energy density functions. 
Currently, the strain energy functions corresponding to 

,  and  are assumed to take the following forms: 

    (25a) 

                       (25b) 

                                               (25c) 
where  and  are the first invariants of the right 
Cauchy-Green strain tensor corresponding to the 
deformation gradient tensor resulting from  and , 
respectively. From these strain energy functions, the 
stress tensor can be computed. The elastic equilibrium 
shear stress is as follows: 

          (26) 

and the hysteretic equilibrium stress and overstress are as 
follows:  

             (27a) 

                     (27b) 
Eqs. (19) to (24) and (26) to (27) define the complete H-S 
elastomeric material model.  
 
H-S elastomeric material model implementation 
 
The material parameters required for the H-S model can 
be obtained as follows: 
1) First, the elastic and plastic material parameters are 

identified from relaxation tests. The relaxation stress 
can be considered as the elastic and plastic response 
only when the time scale is sufficiently long for a 
relaxation test. The parameters involved in the elastic 
and plastic behavior of the material can be identified 
by fitting the elastic and plastic response of the H-S 
model to the measured relaxation data. 

2) Second, the viscous material parameters are 
identified from relaxation and harmonic strain tests. 
Once the parameters involved in the elastic and 
plastic behavior of the material are identified, the 
elastic and plastic response can be computed and 
subtracted from the experimentally measured total 
stress history to get the overstress history from which 
the parameters involved in the viscous behavior of 
the material can be identified. 

 
H-S model response under harmonic strain. In this 
section, some of the model parameters based on storage 
and loss moduli determined through a sinusoidal shear 
test are identified. In this case, a harmonic strain history is 
prescribed, as follows: 

                                (28) 
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The corresponding steady state stress history would be as 
follows: 

            (29) 

From these strain and stress histories, the storage 
modulus, , and loss modulus, are as follows: 

                                     (30a) 

                                     (30b) 

The above expressions can then be fitted to experimental 
data to identify the material parameters. 
 
Since it is not easy to get a closed-form expression for the 
structural variable (Eq. 24) when a harmonic strain is 
applied, in the following discussion, the relaxation time 

 is assumed to be constant and independent of . After 
the harmonic behavior of the model with constant 
relaxation time is studied, the influence of  on the 
storage and loss moduli will be discussed. 
 
Experimental-data fitting. Once the analytical 
formulations for the storage and loss moduli are 
determined, these expressions can be used to identify the 
unknown material parameters by fitting to test data. The 
identification procedure involves the minimization of the 
error between Eqs. (30) and the test data, with the 
following error function: 

                 (31) 

where  and  are the analytical expressions, Eqs. 

(30), and  and  are the experimental test data. 
  
The test data used for the fitting procedure was obtained 
from Ref. 20 and consists of the storage and loss moduli 
measured at the following strain amplitudes and 
frequencies: 

                        (32a) 
 Hz              (32b) 

Figures 10-11 show the fitted storage and loss moduli 
together with the test data. It can be seen that the H-S 
material model with constant relaxation time is capable of 
fitting the storage modulus quite well while the same is 
not true for the loss modulus. 
 
H-S model with non-constant relaxation time, harmonic 
response. In the previous section, the relaxation time was 
assumed to be constant and it has been shown that this 
model is not capable of predicting the loss modulus 
behavior. In this section, the model predictions are 
investigated with a variable structural parameter . 
Numerical simulations have been performed with the 

identified material parameters from the fitting procedure 
for Figs. 10-11 together with assumed parameters 
involved in determining . 
 

 
Fig. 10. Storage modulus fitting. With symbols: test 
data; without symbols, Eqs. (30). 
 

 
Fig. 11. Loss modulus fitting. With symbols: test data; 
without symbols, Eqs. (30). 
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The stress response of the material was computed with 
harmonic strain, Eq. (28), as input. A Fourier 
transformation was then performed on the stress history to 
get the components with same frequency as that of the 
input strain. Finally, the storage and loss moduli were 
calculated from Eqs. (30). The results are shown in Figs. 
12-13. From these figures, it can be seen that the loss 
modulus is much better fitted. The model now captures 
the general form of the loss modulus variation with 
frequency and shear strain amplitude. It is believed that, if 
the material parameters were better tuned, the H-S model 
can give even better predictions. 
 

                   
Fig. 12.  Storage modulus with assumed  related 
parameters. 
 
One important thing that should be pointed out is that the 
previous analysis and discussions are all based on the fact 
that the H-S model consists of one elastic, one plastic and 
one viscous path in parallel. However, as indicated in Eq. 
(19), the H-S model can involve several plastic and/or 
viscous paths in parallel. It can be expected that the 
predictions from H-S model will have a better agreement 
with the actual behavior of elastomeric materials when 
more plastic and/or viscous paths are included in the 
model. Figs. 14-15 present the storage and loss moduli 
fitting but this time with three viscous paths (or Maxwell 
elements). It can be seen that the fitted results are much 
better than those shown in Figs. 10-11 where only one 
Maxwell element was used. 
 
H-S model response under relaxation test. Typical 
relaxation stress and relaxation moduli have been 
obtained and the trends agree with the experimental 
observations reported by Austrell [Ref. 20]. The results 

are not shown here. These results are similar to the ones 
discussed later using the Höfer-Lion model, shown in Fig. 
22. 
 

 
Fig. 13. Loss modulus with assumed  related 
parameters. 

 

 
 

Fig. 14. Storage modulus fitting. With symbols: test 
data; without symbols, Eqs. (30) for case with three 
Maxwell elements. 
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Fig. 15. Loss modulus fitting. With symbols: test data; 
without symbols, Eqs. (30) for case with three Maxwell 
elements. 
 
Numerical simulations. Numerical simulations with the 
H-S model have been performed to evaluate its capability 
to capture the typical experimental observations for 
elastomers. Simulations have been performed with two 
specified strain histories that separately simulate a 
maneuver and a variable-thrust flight profile. In the first 
strain profile, the strain amplitude is increased and then 
decreased, Fig. 16, a maneuver flight profile. In the 
second strain profile, a static offset is introduced, Fig. 17, 
a variable-thrust flight profile. 
 

 
Fig. 16. Sinusoidal strain with increasing and 
decreasing amplitudes. 
 
Results for the sinusoidal strain with increasing-
decreasing amplitude, Fig. 16, showed that whether the 
strain amplitude is increasing or decreasing does not 
affect the storage and loss moduli of the material as long 

as the application time is long enough for each amplitude. 
This means that the decline in the modulus due to an 
increase of the strain amplitude is recoverable, which is in 
accordance with the experimental results reported in Ref. 
20. Simulation on a sinusoidal strain with static offset, 
Fig. 17, showed that the strain offset has little influence 
on the loss modulus but affects the storage modulus if the 
stress-strain relationship for the elastic response is 
nonlinear.  
 

 
Fig. 17. Sinusoidal strain with static strain offset. 

 
Overall, the above studies are encouraging regarding the 
suitability of the H-S model for predicting the behavior of 
typical elastomeric materials. The H-S model includes all 
the necessary elements - elastic, plastic, and viscous - to 
model a carbon filled elastomer. However, to be able to 
fully judge the performance of the model, experimental 
data for the actual damper material is required. 
Elastomers are complex materials and an analytical model 
that works for one specific type of material may not work 
for all elastomer types. 
 

Höfer-Lion Model (H-L Model) 
 
The Höfer and Lion model, H-L model, Ref. 21, is a 
recent, time domain formulation for finite nonlinear 
viscoelasticity with distinct relaxation and recovery 
behavior of the storage and loss moduli, and the authors 
claim that their modeling approach can predict the 
recovery behavior of typical elastomers quite well. The 
H-L elastomeric material model has been currently 
evaluated in this study by comparing its predictions with 
the sample experimental data provided by SKF. Finally, 
responses of the H-L model to typical strain profiles have 
been investigated.  
 
H-L model constitutive equations 
 
The H-L model is based on the concept of stress 
decomposition.  The one-dimensional version consists of 
one elastic path and one or more Maxwell elements in 
parallel. The total shear stress can be additively 
decomposed as follows: 

 
                               

(33) 
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where  is the elastic equilibrium shear stress which can 
be given by any physically meaningful stress-strain 
relationship, for example: 

                                 (34) 
In Eq. (33),  is the over-stress in the mth Maxwell 
element, given by: 

     
(35) 

Here  is an intrinsic time scale and  the relaxation 
time. Note that if , Eq. (35) becomes the equation 
for the standard linear Maxwell element with 
viscosity , which is well-suited for modeling 
the frequency-dependent properties of elastomeric 
materials but cannot describe any amplitude-dependent 
phenomena. To model both the amplitude- and frequency-
dependent behaviors of elastomeric materials, the 
evolution of  is given by the following differential 
equation: 

      
(36) 

Here ,  and  are material parameters and  are 
the internal variables to describe the amplitude 
dependence of the material.  are given by a set of first 
order differential equations in the following form: 

       
(37) 

The parameters  are relaxation times describing the 
dynamic behavior of the material's microstructure and the 
constant  sec is introduced for dimensional 
reasons. 
 
The two terms on the right-hand side of Eq. (36) were 
proposed for different purposes. The first term describes 
the short-term behavior of the material between amplitude 
steps, while the second term is included to describe the 
long-term recovery behavior of the modulus. The 
characteristics of these two terms are discussed as 
follows. When , the H-L model consists of only the 
first term, and the model will be referred to as the -1 
model; when , the H-L model consists of only the 
second term, and will be referred to as the -0 model. 
 

-1 model. For the -1 model, Eq. (35) becomes (with 
the subscript m omitted): 

      
                 (38) 

This is the differential equation for a Maxwell element 
with relaxation time, as follows: 

                                 (39) 

Accordingly, the viscosity for the Maxwell element is: 

                   (40) 

with . Note that this viscosity is the same as the 
expression for the viscosity of Haupt-Sedlan model (Eq. 
(22) in the H-S Model section) which means that the -1 
model is the same as the H-S model but with a constant 

. Hence, the behavior of the -1 model will not be 
discussed here. Earlier discussions on the H-S model with 
constant  apply to the -1 model as well. 
 

-0 model. For the -0 model, Eq. (35) becomes: 

 
                       (41) 

with evolution equations given by Eq. (37) for q. The 
behavior of this -0 model is, in general, different from 
the -1 model. However, considering the case where q 
achieves a steady state (constant), , then 

. Then Eq. (41) becomes: 

          (42) 

 
The -0 model in this case is the same as the -1 model 

with , Eq. (38). 

 
H-L material model implementation 
 
H-L model response under harmonic strain. Earlier, the 
H-S model with constant  was fitted to the 
experimental storage and loss moduli. In this section, the 
same fitting procedure is applied to the -1 and -0 
models to study their capability to model the amplitude- 
and frequency-dependency of the elastomeric materials. 
Figs. 18-19 below present the storage and loss moduli fits 
for the -1 and -0 models with one Maxwell element 
in parallel, while Figs. 20-21 show the results for the -1 
and -0 models with three Maxwell elements in parallel.   
 
Note that the test data used here was obtained for “an” 
elastomeric material that is not necessarily the 
formulation used for damper applications. Some key 
observations from these two sets of figures, Figs. 18-21, 
are as follows: 
1) The overall fit for the storage modulus is better than 

that for the loss modulus. 
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Fig. 18. Storage and loss moduli fitting vs. shear 
amplitude. With symbols: test data; without symbols: 

-1 model fitting with one Maxwell element. 
 

 
Fig. 19. Storage and loss moduli fitting vs. shear 
amplitude. With symbols: test data; without symbols: 

-0 model fitting with one Maxwell element. 
 

2) The -1 model performs better than -0 model for 
the storage modulus fitting, while the -0 model 

works better than -1 model for the loss modulus 
fitting. 

 

 
Fig. 20. Storage and loss moduli fitting vs. shear 
amplitude. With symbols: test data; without symbols: 

-1 model fitting with three Maxwell elements. 
 

 
Fig. 21. Storage and loss moduli fitting vs. shear 
amplitude. With symbols: test data; without symbols: 

-0 model fitting with three Maxwell elements. 
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3) The fit for the -1 model becomes much better 
when the number of parallel Maxwell elements 
increases whereas similar fitting improvement with 
the increasing number of parallel Maxwell elements 
is not apparent for the -0 model. 
 

H-L model response under relaxation test. Typical 
relaxation stress and relaxation moduli are shown in Fig. 
22 below. In the top figure, a larger stress corresponds to 
a larger strain, as expected. In the bottom figure, however, 
a larger relaxation modulus corresponds to a smaller 
strain step size, i.e. the relaxation modulus decreases with 
increasing strain step size. These results agree with the 
experimental observations reported in Ref. 20. 
 

 
Fig. 22. Relaxation vs. time. Top: relaxation stress; 
bottom: relaxation modulus. 

 
Numerical simulations. Numerical simulations were 
performed with the two special strain histories, Figs. 16-
17. Results for a sinusoidal strain with increasing-
decreasing amplitude, Fig. 16, showed that whether the 
strain amplitude is increasing or decreasing does not 
affect the storage and loss moduli of the material as long 
as the application time is long enough for each amplitude. 
This means that the decline in the modulus due to an 
increase of the strain amplitude is recoverable, which is in 
accordance with the experimental results reported in Ref. 
20. However, if the application time of the strain is not 
long enough compared with the material recovery time, 
the moduli between increasing and decreasing amplitude 
sequences are different. The significance of this 
difference depends on the relative length of the strain 
application time to the material recovery time. 
 
Simulation on a sinusoidal strain with static offset, Fig. 
17, showed that the effect of the static strain offset on 

both the storage and loss moduli is negligible for the 
offsets investigated.  
 
Overall, the above studies are encouraging regarding the 
suitability of the H-L model for predicting the behavior of 
typical elastomeric materials. Compared with the H-S 
model, the H-L model does not have a plastic element, 
and also, the stress-strain relationship for the elastic 
response is linear. However, these drawbacks can be 
overcome by including one or more plastic elements in 
the H-L model, and replacing the stress-strain relationship 
for the elastic response with a nonlinear relationship, 
which should improve the performance of the H-L model. 
As noted earlier, however, to be able to fully judge the 
performance of the models, the experimental data for the 
actual damper material is required. Elastomers are 
complex materials and an analytical model that is good 
for one specific type of material may not be good for all 
elastomer types. 
 
H-L model evaluation summary 
 
From the preceding analytical studies, the following 
conclusions, similar to those for the H-S model, can be 
drawn for the H-L model as follows: 
1) The H-L model is capable of capturing the frequency 

and the amplitude dependency of the storage and loss 
moduli. 

2) Predictions from the H-L model under relaxation 
tests agree with the typical experimental observations 
for elastomeric materials under relaxation tests. 

3) Simulation results for a sinusoidal strain with 
increasing and then decreasing amplitude showed 
that whether the strain amplitude is increasing or 
decreasing does not affect the storage and loss 
moduli of the material as long as the settling time is 
long enough for each amplitude. However, if the 
settling time is not long enough compared to the 
recovery time, the modulus for the same amplitude in 
increasing and decreasing sequences is different. 

4) The static strain offset does not affect the storage and 
loss moduli. 

The material parameters identification procedure for this 
H-L model would be easier than that for the Haupt-Sedlan 
model since closed-form expressions for the stress history 
of the H-L model under harmonic strain or relaxation test 
can be obtained. These expressions can then be fitted to 
the experimental data to identify the material parameters. 
 
 
Comparison of H-S and H-L models 
 
Two elastomeric material models, the Haupt-Sedlan and 
the Höfer-Lion models, have been thoroughly analyzed in 
this study. These analyses were based on a simple shear 
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deformation case, a deformation state close to the actual 
work state of the lead-lag dampers used in rotorcraft. 
From our studies, it has been found that both the H-S and 
the H-L models are capable of predicting some typical 
experimental observations for elastomeric materials, and 
the overall predictions from these two models are quite 
similar.  
 
The H-S model includes the necessary elements for 
modeling elastomeric materials: the elastic, plastic, and 
the viscous element. Hence, in theory, the H-S model 
should be able to model the behavior of the elastomeric 
materials if the material parameters are well-tuned. 
However, the equation governing the structural variable q, 
Eq. (24), is difficult to solve analytically, even for a very 
simple strain history. 
 
Also, the H-L model does not have a plastic element and 
the stress-strain relationship for the elastic response is 
linear. However, this drawback can be overcome by 
including one or more plastic elements in the H-L model 
and replacing the stress-strain relationship for the elastic 
response with a nonlinear relationship, which should 
improve the performance of the H-L model. 
 

Material Characterization Testing 
 
Our repeated efforts to find a suitable source that could 
provide the relevant constitutive material property data 
that could be used in the current effort were unsuccessful. 
Consequently, the required material characterization tests 
will be performed by MTC/Georgia Tech to obtain the 
desired constitutive property data. In this respect, the 
Aerospace Division of SKF Corporation is expected to 
furnish samples, nominally  

, of the production elastomeric material used 
in its damper installed in the new Bell M429 helicopter. 
MTC/Georgia Tech have initiated the design of a new 
experimental test setup for the material characterization 
tests. This task involves building a new mechanical test 
system and performing material characterization tests to 
generate the desired property data.  
 

Concluding Remarks 
 
An analytical, first-principles modeling study on 
helicopter elastomeric dampers was presented. The goal 
of this ongoing study is to model the critical behaviors 
that rotorcraft elastomeric dampers exhibit, i.e. the 
hyperelastic, viscous, and nonlinear behaviors involving 
hysteresis loops. First-principles models predict the 
behavior of a device based on a continuum mechanics 
approach in which the geometric configuration of the 
various components of the device is modeled using, for 
example, a finite element approach, and the material 
behavior is represented by an appropriate set of nonlinear 
constitutive laws. On completion of the present effort, the 

current model would not require the damper to exist a 
priori.  The model and the methodology therein could be 
used to optimize the design of a damper concept.  
 
Sample results were presented. An initial, overall 
validation effort has demonstrated the successful step-by-
step sample development of a new finite element damper 
model and, importantly, its integration with the multibody 
dynamics analysis DYMORE. Two material models, the 
Haupt-Sedlan model and the recently proposed Höfer-
Lion model, have been analyzed, and the results have 
been fitted to sample experimental data. Both models 
gave acceptable results for the storage and loss moduli. 
Since at present there is a dearth of available appropriate 
material data for the typical elastomers used in helicopter 
dampers, a new experimental effort has been initiated by 
Materials Technologies Corporation (MTC) and Georgia 
Tech to conduct materials testing and acquire the required 
material data. 
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